5.1 Matrices semblables

 $\textbf{D\'efinition 55} \ (\text{semblables}).$

Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices. S'il existe une matrice $P \in M_{n \times n}(\mathbb{R})$ inversible telle que

$$B = P^{-1}AP$$

on dira que A est semblable à B.

Exemple

Remarques

Théorème 50. Deux matrices semblables ont les mêmes valeurs propres et les mêmes polynômes caractéristiques.
Preuve
Remarques
Exemples

5.2 Diagonalisation

Pour $A \in M_{n \times n}(\mathbb{R})$, notre but est de chercher $P \in M_{n \times n}(\mathbb{R})$ inversible telle que $P^{-1}AP$ soit égale à une matrice diagonale D:

Définition 56 (matrice diagonalisable).

Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Si A est semblable à une matrice diagonale D, alors on dira qu'elle est diagonalisable. Dans ce cas, on aura

$$D = P^{-1}AP \text{ et } A = PDP^{-1}.$$

pour une matrice inversible $P \in M_{n \times n}(\mathbb{R})$.

Théorème 51 (critère de diagonalisation). Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Alors A est diagonalisable si et seulement si elle admet n vecteurs propres linéairement indépendants.

Pratiquement:

On cherche d'abord les valeurs propres, puis les espaces propres associés. Si on obtient n vecteurs propres $\vec{v}_1, \dots \vec{v}_n$ linéairement indépendants, alors on peut poser

Exemples

Résumé

1. Une matrice $A \in M_{n \times n}(\mathbb{R})$ est diagonalisable si et seulement si elle admet n vecteurs propres linéairement indépendants.

2. Si A possède r valeurs propres disctinctes, alors A admet au moins r vecteurs propres linéairement indépendants.

Théorème 52. Soit A une matrice $n \times n$. Si A possède n valeurs propres distinctes alors A est diagonalisable.

Remarques

Théorème 53. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Si $p_A(\lambda)$ admet n racines comptées avec leur multiplicité, alors A est diagonalisable si et seulement si

Exemple

Définition 57 (multiplicité géométrique). On appelle

la multiplicité géométrique de la racine

Théorème 54. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. Si A est symétrique, alors elle est diagonalisable.

5.3 Applications linéaires et valeurs propres

Soit $A \in M_{n \times n}(\mathbb{R})$ et $T : \mathbb{R}^n \to \mathbb{R}^n$ l'application linéaire définie par $T(\vec{v}) = A\vec{v}$

pour tout $\vec{v} \in \mathbb{R}^n$.

Proposition Soit $P \in M_{n \times n}(\mathbb{R})$ une matrice inversible et $C = P^{-1}AP$. Si \mathcal{B} est la base de \mathbb{R}^n formée des colonnes de P, alors C est la matrice qui représente T dans la base \mathcal{B} .

Preuve

Théorème 55. Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice diagonalisable avec $D = P^{-1}AP.$

Soit \mathcal{B} la base de \mathbb{R}^n formée des colonnes de P. Alors D est la matrice qui représente T dans la base \mathcal{B} .

Exemple

Remarque

Si A n'est pas diagonalisable, on peut chercher à remplacer A par une matrice semblable plus simple (mais non diagonale). Pour cela, on peut compléter les vecteurs propres linéairement indépendants de A en une base de \mathbb{R}^n .

Considérons par exemple A =